Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
时空预测是数据科学的急需主题,因为它在智能城市中的多样化和关键应用。现有作品主要对以下步骤进行连续预测,并完全连续地获得观察结果,其中最接近的观测值可以作为瞬时状态估计的关键知识。但是,早期活动计划和传感器失败的实际问题引发了一项全新的任务,即非连续预测。在本文中,我们将缺少观察的时空学习系统定义为灰色时空系统(G2S),并为G2S(FDG2S)提出了一个因子耦合学习框架(FDG2S),其中核心的想法是层次结构上的多层级别,并既可以启用灵活的聚合柔性聚合因子和不确定性估计。首先,为了补偿缺失的观察结果,设计了一个通用的语义邻次序列采样,该采样选择了代表性序列以捕获周期性的规律性和瞬时变化。其次,我们将非连续状态的预测变成了预期的外源性因素下的推断状态。特别是,提出了一个因子耦合的聚合方案,以通过条件随机场的两个能量函数解除因子诱导的预测强度和区域邻近。为了在柔性因子组合和实现动态邻域聚集下推断区域的接近性,我们进一步消除了外源性因素对区域接近性的复合影响,并学会汇总它们。鉴于G2的固有不完整和关键应用,提出了一个不确定性量化,以确定可靠性保证和模型解释的两种类型的不确定性。
translated by 谷歌翻译
对基于深度学习的模型的对抗性攻击对当前的AI基础架构构成了重大威胁。其中,特洛伊木马袭击是最难防御的。在本文中,我们首先引入了Badnet类型的攻击变体,该攻击将特洛伊木马后门引入多个目标类,并允许将触发器放置在图像中的任何位置。前者使其更有效,后者使在物理空间中进行攻击变得非常容易。这种威胁模型的最先进的特洛伊木马检测方法失败了。为了防止这种攻击,我们首先引入了一种触发反向工程机制,该机制使用多个图像来恢复各种潜在的触发器。然后,我们通过测量此类恢复触发器的可传递性提出了检测机制。特洛伊木马触发器的可传递性将非常高,即它们使其他图像也进入同一类。我们研究攻击方法的许多实际优势,然后使用各种图像数据集证明检测性能。实验结果表明,我们方法的卓越检测性能超过了最新的。
translated by 谷歌翻译
在过去几年中,已经提出了多语言预训练的语言模型(PLMS)的激增,以实现许多交叉曲线下游任务的最先进的性能。但是,了解为什么多语言PLMS表现良好仍然是一个开放域。例如,目前尚不清楚多语言PLM是否揭示了不同语言的一致令牌归因。要解决此问题,请在本文中提出了令牌归因(CCTA)评估框架的交叉致新一致性。三个下游任务中的广泛实验表明,多语言PLMS为多语素同义词分配了显着不同的归因。此外,我们有以下观察结果:1)当它用于培训PLMS时,西班牙语在不同语言中实现了最常见的令牌归属;2)令牌归属的一致性与下游任务中的性能强烈相关。
translated by 谷歌翻译
我们通过纳入通用依赖性(UD)的句法特征来瞄准直接零射击设置中的跨语言机器阅读理解(MRC)的任务,以及我们使用的关键功能是每个句子中的语法关系。虽然以前的工作已经证明了有效的语法引导MRC模型,但我们建议采用句子际句法关系,除了基本的句子关系外,还可以进一步利用MRC任务的多句子输入中的句法依赖性。在我们的方法中,我们构建了句子间依赖图(ISDG)连接依赖树以形成横跨句子的全局句法关系。然后,我们提出了编码全局依赖关系图的ISDG编码器,通过明确地通过一个跳和多跳依赖性路径来解决句子间关系。三个多语言MRC数据集(XQUAD,MLQA,Tydiqa-Goldp)的实验表明,我们仅对英语培训的编码器能够在涵盖8种语言的所有14个测试集中提高零射性能,最高可达3.8 F1 / 5.2 EM平均改善,以及某些语言的5.2 F1 / 11.2 em。进一步的分析表明,改进可以归因于跨语言上一致的句法路径上的注意力。
translated by 谷歌翻译
蛋白质RNA相互作用对各种细胞活性至关重要。已经开发出实验和计算技术来研究相互作用。由于先前数据库的限制,尤其是缺乏蛋白质结构数据,大多数现有的计算方法严重依赖于序列数据,只有一小部分使用结构信息。最近,alphafold彻底改变了整个蛋白质和生物领域。可预应学,在即将到来的年份,也将显着促进蛋白质-RNA相互作用预测。在这项工作中,我们对该字段进行了彻底的审查,调查绑定站点和绑定偏好预测问题,并覆盖常用的数据集,功能和模型。我们还指出了这一领域的潜在挑战和机遇。本调查总结了过去的RBP-RNA互动领域的发展,并预见到了alphafold时代未来的发展。
translated by 谷歌翻译
在本文中,我们提出了一个手动注释的10,000名推文载有五个Covid-19事件的公开报告,包括积极和消极的测试,死亡,拒绝获得测试,索赔治愈和预防。我们为每种事件类型设计了插槽填充问题,并注释了总共31个细粒度的插槽,例如事件的位置,最近的旅行和密切联系人。我们表明我们的语料库可以支持微调基于伯特的分类器,以自动提取公共报告的事件,并帮助跟踪新疾病的传播。我们还证明,通过从数百万推文中提取的事件汇总,我们在回答复杂的查询时达到令人惊讶的高精度,例如“哪些组织在费城在费城测试的员工?”我们将释放我们的语料库(使用用户信息被删除),自动提取模型以及研究社区的相应知识库。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译